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ALs(met The spectra of the two-hole and the wo4ectron excitations arc calculated 
for a single-band Hubbard Hamiltonian. Equations of motion for retarded two-particle 
double-time Green function are solved using a dcmupling based on the alloy analogy. 
?he solution is correct in exactly solvable limiting cases and has also correct behaviour 
in h e  regime of the strong electron-eleclmn correhtioos. 

1. Introduction 

The spectrum of the two-particle excitations can be qualitatively different in systems 
of strongly correlated electrons from that in systems with only weak interaction. This 
is in particular the case for the density of two-hole or two-electron excitations which 
are related to Auger electron spectra (m), or to appearance potential spectra (Aps). 
The Auger spectra of transition metals are quite different from the spectra of normal 
metals 11-31, 

The effect of the electron correlations on the core-valencevalence (cw) Auger 
spectra has been studied in the framework of the Hubbard model. For systems with 
completely filled, or empty bands there is an exact solution which was used to explain 
the Auger spectra of transition metals on qualitative level [U]. However, for the 
partially filled bands that are typical for most transition metals the situation is more 
complex. In this case, various approximative treatments were used: (i) perturbative 
theory [7-91, (E) cluster calculations [10-12], and decoupling procedures [13-151. 

Validity of the perturbation theory is l i t e d  either to weak interactions or to small 
particle concentration. The cluster calculations are restricted to small systems and 
their results may be impaired by finite size effects. The problem with the decouphg 
technique is that it is not a systematic approach, but it is simple enough to be 
applied in the interesting regime of strong correlations (for any concentration of 
electrons), whereas the perturbation theories suffer from various problems or are 
very complicated. 

Recently we have developed a Hartree-Fock-like solution for two-particle exci- 
tations 1141; it is correct in all exactly solvable limits including the atomic limit. 
However, it turns out that the way it approaches the atomic limit is incorrect. In 
the present work we improve this solution by developing the theory based on alloy 
analogy. 
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2. Preliminaries 

M Kotrla and V Drchal 

The two-particle excitation spectrum of the single-hand Hubbard Hamiltonian 

(1) H = x t i j a f o a , ,  + U x n i T n i l  nio = aiqaio t 
i j o  ; 

can be studied using the retarded two-particle double-time Green function (GF): 

, , , ,  (2) 
, ,  , ,  G ' '  I>"!, ('1 , . . ,  = ((aiTaj&l:$a&))z'  , , ,  ... 

We use the standard notation: i , j ,  IC, 1 are site indices, U =r,J is the spin index; GF 
is written in energy representation for complex energy z. The AES and APS are given 
hy the spectrd density 

, ,  

(3) 
1 A ( E )  = -IImG,(E+io)l  
IF 

where G o ( z )  = Goooo(z) is a superdiagonal element of the two-particle OF (2). The 
GF G i j k l ( z )  obeys the equation of motion 

3. Alloy analogy solution 

'Tb End the solution for GF G we need an approximative expression for the higher- 
order GF r. In a previous paper [14], we employed a simple local approximation 

' # j k l ( ' )  (n,l + njT)G,jkl(z)' (7) 

This leads to the solution applicable to any electron concentration 0 6 n < 2 and to 
any strength of the interaction U. This Hartree-Fwk-like solution is correct in four 
exactly solvable limiting cases: (i) the limit of non-interacting electrons (U + 0), (ii) 
the atomic limit (band width W + 0) ,  ( i )  the limit of low concentration of electrons 
(n 4 0), and (iv) the limit of low concenttation of holes (n -+ 2). Moreover, it 
behaves correctly at the electron-hole transformation. However, it is not a genuine 
interpolating solution between the weak and strong interaction regimes because it is 
not correct in the neighbourhood of the atomic limit. 
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More precisely, it is exact for t i j  = 0 and finite U but it does not have correct 
behaviour for finite, non-zero t i j  and U / t  + CO. In this strong correlation regime 
one would expect that the peaks in the two-particle spectrum are separated by the 
distance of order U from each other independently of the filling n. ?b see this, let us 
consider a finite lattice, possibly with periodic boundary conditions. As a basis of the 
corresponding Fock space, we choose the many-particle states in site representation: 

Here C is the set of occupied spin orbitals. The Hamiltonian (1) is, in this space, 
represented by a matrix with diagonal elements U k ,  where k is an integer. Off- 
diagonal elements of this matrix (which come from the hopping term) represent, in the 
large-U limit, a small perturbation proportional to a small parameter t. According to 
Gershgorin circle theorem (see e.g. [16]), the eigenvalues E of H fulfil the inequalities 

where K is some constant. It now follows from (9) and from the spectral repre- 
sentation of G,(z) that the two-particle excitation spectrum is concentrated around 
integer multiples of U. On the other hand, the Hartree-Fock-like solution has peaks 
with the distance Un. 

In order to find an improved solution, one could employ equations of motion 
for GF r, and then look for a suitable factorization of the higher-order GFS that 
enter these equations. An attempt to follow the derivation of the so-called 'Hubbard 
III' solution [lq, which is a higher-order solution for the one-particle GF with both 
correct band and atomic limits, has shown that in the two-particle case the structure 
of equations is different It turned out that this approach can yield either a simple 
solution that does not have the desixcd properties, or a rather complicated set of 
matrix equations that cannot be solved analytically. Therefore, we have decided to 
employ a more sophisticated decouphg for the GF r based on the alloy analogy idea. 

Before describing our approximation let us recall the alloy analogy approximation 
used for the one-particle OF. In this case, the higher order GF ( ( T z ~ - , Q ~ , ~ u , ~ , ) )  is 
approximated as follows 

((%-oaiul(qu)) = v:((QiOla;,)) (10) 

where 11; is a random variable taking two values 0 and 1 with the probabilities (1 - 
ni- - )  and (ni-,). In this way, the electron correlation problem (for the one-particle 
GF) is replaced by the effective binary alloy problem. The one-particle OF for this 
alloy problem can be calculated using the so-called coherent potential approximation 
(CPA) [U], and it has been shown [18] that the solution of the correlation problem 
obtained in this way is identical to the 'Hubbard 111' solution [17]. 

In our case we a p p r o d a t e  rijk,  for i # j as follous: 

rijbr =(vi' + q;)Gijkl (11) 

where qr, as in the one-particle case, is a random variable taking two values: 0 or 1. 
For simpliciv, we will neglect the internal correlations between the random variables 



4254 M Kotrla and V Drchal 

q! and q:. Beating them as independent variables, we arrive at the approximation 
(valid for i + j) 

rijtl C i j G i j i r i  (12) 

where e i j  is a random variable taking three values em, m = 1,2,3, el = 0,  e2 = 1, 
and c3 = 2. The three values of E can be interpreted as renormalized energies (note 
that factor U is not included in the definition of I') corresponding to the situations in 
which none, one or two electrons occupy the states at sites i and j. The probabilities 
ofthese situationsaregiven by the correlation functions ((l-niL)(l-njT)), (ni,(l- 
n,T) 4- (1 - ni,)njt), and (ni ,nj t ) .  They determine the concentrations e, of three 
components of the effective alloy with the site energies E,. In this way we have 
replaced the electroncorrelation problem (for the two-particle GF) by the problem of 
the disordered temary alloy in the space (li 1 j T)). Note that in equation (4) only 
t e m  with i jk j have to be approximated. 

The equation (4) for the GF G can now be written in a matrix form 

[Z - W - U P  - ( 1 - P)UE]G = C (13) 

where P = xi li 1 i t ) ( i  1 i t I is a projector onto the single-site states and 
E = cij li 1 j t ) c i j ( i  1 j t I is a random operator. Here, W is the two-particle 
hopping term 

W = I41  kz t)[E(kl)  + E(kdl(k1 1 k2 t I (14) 
ki  k* 

where 

N is the number of sites, and C is a matrix constructed from the quantities tcijlm, 
(5) 

The equation (13) is valid for one configuration of the effective alloy. A physically 
important quantity is the GF ?? averaged over all alloy configurations. Now there are 
in principle two possibilities: (i) consider the quantity C to be dependent on the 
configurations of the effective alloy too (this complicates the averaging procedure) 
or (ii) take the one-particle correlation functions entering C from an independent 
approximative solution for the one-particle excitations. For the sake of simplicity 
we choose the second possibility. One has to be, however, careful in selecting the 
approximate solution for the one-particle correlation functions because it may tum 
out to be inconsistent with the aUoy analogy approximation for the two-~article OF. 
The different possibilities are discussed below. In order to calculate GF G we define 
the resolvent 

R(z) = [z- W -  UP- (1 - P)UC]-' (17) 
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and its configurational average 
- 
R ( z ) = [ z -  W - C ( Z ) ] - l  (18) 

G =w(z )C  = [ z -  W - C(z) ] - 'C.  

with the self-energy Z(z). Then the averaged GF E is 
- 

(19) 

'~b calculate the GF E we use a CPA-like approximation [ls]. The self-energy in our 
case has the form C = E, Uli 1 i T)(i 1 i 7 I + Cij  li 1 j t )Ci j . ( i  1 j t I, where the 
off-diagonal elements Ci j  ( i  + j) are given by the Soven equatlons 

4. Approximate solution 

Our effective alloy is inhomogeneous in the sense that ehe quantities Eij and Fij 
depend on the distance IRi - Rj I between the sites i and j .  In general, one can look 
for a spatially inhomogeneous solution of (ZO), however, for the sake of simplicity, 
we shall calculate a homogeneous solution setting Cij = C and using a homogenized 
F 

E ' F i j  
1 F =  

N ( N - 1 )  i j  

instead of Fij. 
After this additional approximation the expression (19) for the OF can be written 

explicitly in the same way as in the case of the HartreeFock-like solution 1141. The 
superdiagonal element is then 

where 

nk,, = (a~euk.,) is the average occupation number of the oneelectron Bloch state 

The GF G,(z) has a similar form to the HartreeFock-like solution [14], but the 
renormalized energy [ = z - E(z) and the effective inte?action v = U - C ( z )  are 
now complex quantities depending on the self-energy C given by the Soven equation 
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The equations (22)-(24) form a set of self-consistent equations for a new solution 
which is correct in all above-mentioned exactly  solvable^ limits. The regime of the 
strong correlations U + 00 corresponds to the split-band limit in the alloy problem 
in which energy bands are separated by an energy of order U in agreement with the 
expeaed behaviour. The HartreeFbck-like solution corresponds to the virtual crystal 
approximation in the alloy problem [18], i.e. C = E,,, c,,,Uc, = Un. 

lb solve the set of equations (22)-(24) we need to know the correlation functions 
nks  and (nilnjt). These functions are, of course, not known exactly for interacting 
systems and have to be calculated using some approximation scheme. The simplest 
method of approximation of the oneparticle occupation numbers nkc is to use their 
Hartree-Fbck values, and we shall employ this in the following numerical illustration. 
Another possibility is to use the Gutmiller approximation or the alloy analogy ap- 
proximation for the one-particle GF. The former, however, leads to anomalous effect 
for large U as can be seen by direct calculation using a simplified model discussed 

the next section. For example, for n = 1 and U > U, = 167 (7 is the average 
unperturbed kinetic energy) the two-particle spectra vanish. This case (n = 1) cor- 
responds to the Mott metal-to-insulator transition 1191. We think that this effect is 
probably an artifact of incompatible approximations. The same defect also appears in 
the case of the Hanree-Fock-like solution. The latter possibility (employing the alloy 
analogy approximation for the oneparticle GF) is probably more convenient and can 
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be used, too, for evaluation of the correlation functions (ni,nj,) via the conditionally 
averaged GF. It is, however, numerically more demanding and does not allow further 
simplifications as was possible in the two previous cases. For the sake of simplio 
ity, we use here a crude approximation for the higher order correlation functions: 
(njlnjt) % (ni,)(njr) and we restrict ourselves to the paixmagnetic solution. 

5. Numerical illusbation 

After several approximations we arrived at the set of the equations (22)-(24). To 
obtain numerical results which will illustrate the properties of the new solution we 
use a simplified model introduced in [14] which contains further approxhations. 
In this model the semi-elliptic unperturbed density of stales is assumed (bandwidth 
W = 2) and the so-called scaling-factor approximation and a related interpolating 
approximation are employed (for details see [14l). The OF is given by a one- 
dimensional integral which is evaluated numerically with the help of the analytical 
deconvolution technique. 

i s  obtained numerically by 
iterating the equation (24) with an approximative expression for 

The selfenergy C ( x )  needed to evaluate the GF 

Examples of the two-particle densities calculated for this simplified model and 
some selected parameters n and U are presented in figures 1-3. The energy in these 
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plots is shifted by U. Figure 1 shows spectra for medium interaction and different 
electron concentrations. The results are similar to the Hartree-Fbck-like ones: with 
increasing electron concentration n the number of the two-hole excitations increases 
while the number of the two-electron excitations decreases and the spectra for the 
particle concentrations n and 2 - n are related by the holeelectron symmetry. The 
main difference is that new peaks with small weight appear. In particular, this is 
seen for the half-filled band. In this case the specna calculated using the old solution 
were only shifted and their shapes did not change with U. Using the new solution 
they change and the satellites split off (figure 2). Figure 3 shows the situation for 
a nearly 6Hed band. With increasing strength of pair interaction U the character 
of the spectra changes from band-like spectra to atomic-like ones; for large U an 
atomic-like peak with large weight splits off from the broad main band in agreement 
with previous theories 1461. 

6. Conclusions 

Employing the alloy analogy in the space of the two-particle states we have developed 
a new approximate theory of the two-particle excitations for single-band Hubbard 
model. This is based on the alloy analogy decoupling for the two-particle double- 
time OF followed by several additional approximations some of which could be further 
improved. The theory can be applied to any electron concentration 0 < n < 2 and to 
any strength of pair interaction U. It yields correct results in limiting cases for which 
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an exact solution is known. In addition it behaves correctly in the regime of strong 
interactions U -, CO. The theory can be straightforwardly extended to the me of 
alloys and work on this problem is in progress. 
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