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Abstract. The spectra of the two-hole and the two-electron excitations are calculated
for a single-band Hubbard Hamiltonian. Equations of motion for retarded two-particle
double-time Green function are solved using a decoupling based on the alloy analogy.
The solution is correct in exactly solvable limiting cases and has also correct behaviour
in the regime of the strong electron-electron correlations,

1. Introduction

The spectrum of the two-particle excitations can be qualitatively different in systems
of strongly correlated electrons from that in systems with only weak interaction. This
is in particular the case for the density of two-hole or two-electron excitations which
are related to Auger electron spectra (AES), Or to appearance potential spectra (APS).
The Auger spectra of transition metals are quite different from the spectra of normal
metals [1-3]. .

The effect of the electron correlations on the core~valence-valence (Cvv) Auger
spectra has been studied in the framework of the Hubbard model. For systems with
completely filled, or empty bands there is an exact solution which was used to explain
the Auger spectra of transition metals on qualitative level [4-6]. However, for the
partially filled bands that are typical for most transition metals the sitvation is more
complex. In this case, various approximative treatments were used: (i) perturbative
theory [7-9], (ii) cluster calculations {10~12}, and decoupling procedures [13-15].

Validity of the perturbation theory is limited either to weak interactions or to small
particle concentration. The cluster calculations are restricted to small systems and
their results may be impaired by finite size effects. The problem with the decoupling
technique is that it is not a systematic approach, but it is simple enough to be
applied in the interesting regime of strong correlations (for any concentration of
electrons), whereas the perturbation theories suffer from various problems or are
very complicated.

Recently we have developed a Hartree—Fock-like solution for two-particle exci-
tations [14]; it is correct in all exactly solvable limits including the atomic limit.
However, it turns out that the way it approaches the atomic limit is incorrect. In
the present work we improve this solution by developing the theory based on alloy
analogy.
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2. Preliminaries

The two-particle excitation spectrum of the single-band Hubbard Hamiltonian

H= Ztlj 2o Cio + Uznﬂntl Rig = a’?aa’ia‘ (1)

ijo
can be studied using the retarded two-particle double-time Green function (GF):

Gij H(’-)= ((aiTalj;lﬁﬁazT)>z° o o (2)
We use the standard notation: i, j, k, [ are site indices, o =1, is the spin index; GF

is written in energy representanon for complex energy z. The AEs and APs are given
by the spectral densnty

A(EY= ;ilm G,(E +i0)} 3

where G, (z) == Gygop(2) is a superdiagonal element of the two-particle GF (2). The
GF Gi; k,(z) obeys the equation of motion

2Ga(2) = ki + ZtinG'njki(z) + thnGs'nH(z) + Ué;; Gijra(2)
k3 n

+ U1 = 6;;)T;;01(2) 4)
where

Rijrr = 8465 — Splefian) — 6 {efa;)) (5)
and

Cisr(z) = {{(nyy + n_ﬁ)“.‘fﬂjll“ﬁﬂzﬁ)z- (6)

- 3. Alloy analogy solution

To find the solution for GF G we need an approximative expression for the higher-
order GF I'. In a previous paper [14], we employed a simple local approximation

Lirr(2) m () + n;0) G (2). N

This leads to the solution applicable to any electron concent:anon 0gng2and to
any strength of the interaction /. This Hartree-Fock-like solution is correct in four
exactly solvable limiting cases: (i) the limit of non-interacting electrons (U’ — 0), (ii)
the atomic limit (band width W — 0), (iii) the limit of low concentration of electrons
(n — 0), and (iv) the limit of low concentration of holes (n — 2). Moreover, it
behaves correctly at the electron-hole transformation. However, it is not a genuine
interpolating solution between the weak and strong interaction regimes because it is
not correct in the neighbourhood of the atomic limit.
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More precisely, it is exact for ¢;; = 0 and finite U but it does not have correct
behaviour for finite, non-zero #;; and U/t — oo. In this strong correlation regime
one would expect that the peaks in the two-particle spectrum are separated by the
distance of order U from each other independently of the filling n. b see this, let us
consider a finite lattice, possibly with periodic boundary conditions. As a basis of the
corresponding Fock space, we choose the many-particle states in site representation:

() = [] efl0). (8)

(ic)eC

Here C' is the set of occupied spin orbitals. The Hamiltonian (1) is, in this space,
represented by 2 matrix with diagonal elements Uk, where &k is an integer. Off-
diagonal elements of this matrix (which come from the hopping term) represent, in the
large-U limit, a small perturbation proportional to a small parameter £. According to
Gershgorin circle theorem (see e.g. [16]), the eigenvalues E of H fulfil the inequalities

E- Ukl < 3 [He,o,l < tK ©
Cy

where K is some constant. It now follows from (9) and from the spectral repre-
sentation of G,(z) that the two-particle excitation spectrum is concentrated around
integer multiples of U/. On the other hand, the Hartree-Fock-like solution has peaks
with the distance Un.

In order to find an improved solution, one could employ equations of motion
for GF T', and then look for a suitable factorization of the higher-order GFs that
enter these equations. An attempt to follow the derivation of the so-called ‘Hubbard
IIT’ solution [17], which is a higher-order solution for the one-particle GF with both
correct band and atomic limits, has shown that in the two-particle case the structure
of equations is different. It turned out that this approach can yield either a simple
solution that does not have the desircd properties, or a rather complicated set of
matrix equations that cannot be solved analytically. Therefore, we have decided to
employ a more sophisticated decoupling for the GF I based on the alloy analogy idea.

Before describing our approximation let us recail the alloy analogy approximation
used for the one-particle GF. In this case, the higher order GF ((n;_aa,-,laj'a)) is
approximated as follows

((niuoaiala;‘a)) ~ ng ((uiala‘;-d» (10)

where n? is a random variable taking two values 0 and 1 with the probabilities (1 —
n;_.) and {n;__). In this way, the electron correlation problem (for the one-particle
GF) is replaced by the effective binary alloy problem. The one-particle GF for this
alloy problem can be calculated using the so-called coherent potential approximation
(cra) [18], and it has been shown [18] that the solution of the correlation problem
obtained in this way is identical to the ‘Hubbard IIT" solution [17).

In our case we approximate I',,,; for i £ j as follows:

Fiig w (nt + n})GijkI (11)

where 77, as in the one-particle case, is a random variable taking two values: 0 or 1.
For simplicity, we will neglect the internal correlations between the random variables
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n;-‘ and n}. Treating them as independent variables, we arrive at the approximation
(valid for ¢ ¥ j)

Ciier = €; G (12)

where ¢;; is a random variable taking three values ¢,,, m = 1,2,3, ¢, =0, ¢, = 1,
and e; = 2. The three values of e can be interpreted as renormalized energies (note
that factor U is not included in the definition of I') corresponding to the situations in
which none, one or two electrons occupy the states at sites ¢ and j. The probabilities
of these situations are given by the correlation functions {(1-n;,)(1-n;;)}, (n; (1~

nip+ (1 —n;)n;), and (n; n ;). They determine the concentrations c,, of three
components of the effective alloy with the site energies ¢ . In this way we have
replaced the electron-correlation problem (for the two~part1cle GF) by the problem of
the disordered ternary alloy in the space (|7 | 7 T)). Note that in equation (4) only
terms with : # j have to be approximated.

The equation (4) for the GF GG can now be written in a matrix form

[e—W -UP—(1-P)YUEG=C ' (13)

where P = 5 ;|1 | ©« 1}{ | ¢ T | is a projector onto the single-site states and

£ = Z., f | J The; (s 1 1 |is a random operator. Here, W is the two-particle
hopping term

W =303 lky L kg Bk + B(ko)](ky Lk, 1] (14)
ky Rz
where
B(k) = 3 ey, Lk, )= 5 YRR i) )
j 7

N is the number of sites, and C is a matrix constructed from the quantities «,;;,,,
©) _ _
C= 3 liljrymaitiml. (16)

ifim

The equation (13) is valid for one configuration of the effective alloy. A physically
lmportant quantity is the GF G averaged over all alloy configurations. Now there are
in principle two possibilities: (i) consider the quantity C to be dependent on the
configurations of the effective alloy too (this complicates the averaging procedure)
or (if) take the one-particle correlation functions entering C from an independent
approximative solution for the one-particle excitations. For the sake of simplicity
we choose the second possibility,. One has to be, however, careful in selecting the
approximate solution for the one-particle correlation functions because it may turn
out to be inconsistent with the alloy analogy approximation for the two-particle GF.
The different possibilities are discussed below. In order to calculate GF G we define
the resolvent

R(2)=[z-W-UP-(1- P)UE? (17)
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and its configurational average

R(2) =[2-W-2(z)]" (18)
with the self-energy £(z). Then the averaged GF G is

G =R(2)C =[z-W -X(2)]"C. 19)

To calculate the GF G we use a CPA-like appmxxmatlon [18]- The self-energy in our
case has the form ¥ = 3, Uls J i TM{i L ¢ | H'Z:: £171) E,_,(zlgﬂ,wherethe

off-diagonal elements Z;; (¢ # j) are given by the Sover equations
E cm(Ufm - zlj)
m 1—(U€m_2£j)FI:J

=0 Fy=@GljitIRlilit).  (20)

4. Approximate solution

Our effective alloy is inhomogeneous in the sense that the quantities ;; and Fj;
depend on the distance |R; — R, | between the sites 7 and j. In general, onc can Iook
for a spatially inhomogeneous solut;on of (20), however, for the sake of simplicity,

we shall calculate a homogeneous solution setting X,; = ¥ and using a homogenized
F:
Foe—— > ' Fy; (21)
N(N-1) 5 Y
instead of F;.

After this additional approx:manon the expression (19) for the GF can be written
explicitly in the same way as in the case of the Hartrce—Fock like solution [14]. The
superdiagonal element is then

L=—nyy—ny
Gol2) = N?'E -Vy (k+q,£)e E(k) - E(q) @)

where

W, (k&) = (23)

1
N;f E(k - Q) E(q)

Ny, = {a},ay,} i the average occupation number of the one-electron Bloch state
(ko).

The GF G () has a similar form to the Hartree-Fock-like solution [14], but the
renormalized energy £ = z — £(z) and the effective interaction V = U — X(z) are
now complex quantities depending on the self-energy X given by the Soven equation

¢ (Ue, —X(z)) 1
T (e, s FG) =0 P =90 = Nﬂze Ew) - E@ )
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TWO-PARTICLE DOS

SHIFTED ENERGY

Figare 1. Density of the two-bole excitations (full curve) comresponding to the Auger
spectrum and the two-clectron excitations (dotted curve) corresponding to the appearance
potential spectrum calculated within the simplified model for UV = 1.5 and varying
cleciron concentration r.

The equations (22)-(24) form a set of self-consistent equations for a new solution
which is correct in all above-mentioned exactly solvable limits. The regime of the
strong correlations I/ — oo corresponds to the split-band limit in the alloy problem
in which energy bands are separated by an energy of order U/ in agreement with the
expected behaviour. The Hartree—Fock-like solution corresponds to the virtual crystal
approximation in the alloy problem [18],ie. E =}, ¢, Ue, = Un.

To solve the set of equations (22)-(24) we need to know the correlation functions
R, and {n; n,;). These functions are, of course, not known exactly for interacting
systems and have to be calculated using some approximation scheme, The simplest
method of approximation of the one-particle occupation numbers =, is to use their
Hartree~Fock values, and we shall employ this in the following numerical ilfustration.
Another possibility is to use the Gutzwiller approximation or the alloy analogy ap-
proximation for the one-particle GF. The former, however, leads to anomalous effect
for large U as can be seen by direct calculation using a simplified model discussed
in the next section. For example, for n = 1 and U > U, = 16€ (€ is the average
unperturbed kinetic energy) the two-particle spectra vamsh This case (n = 1) cor-
responds to the Mott metal-to-insulator transition [19]. We think that this effect is
probably an artifact of incompatible approximations. The same defect also appears in
the case of the Hartree-Fock-like solution. The latter possibility (employmg the alloy
analogy approximation for the one-particle GF) is probably more convenient and can
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n=1.0

Usdt

Uwl.5

TWO-PARTICLE DOS
= [
L> L

U=0D

-6 -4 -2 O 2 4 B
SHIFTED ENERGY .
Figure 2. Similar to figure 1, but for n = 1 and varying U,

be used, t0o, for evaluation of the correlation functions (n;, n;,) via the conditionally
averaged GF. It is, however, numerically more demanding and.does not allow further
simplifications as was possible in the two previous cases. For the sake of simplic-
ity, we use here a crude approximation for the higher order correlation functions:
{n;n;t) = (n; }{n;;) and we restrict ourselves to the paramagnetic solution.

5. Numerical illustration

After several approximations we arrived at the set of the equations (22)-(24). To
obtain numerical results which will illustrate the properties of the new solution we
use a simplified model introduced in [14] which contains further approximations.
In this mode] the semi-elliptic unperturbed density of states is assumed (bandwidth
W = 2) and the so-called scaling-factor approximation and a related interpolating
approximation are employed (for details see [14]). The GF G, is given by a one-
dimensional integral which is evaluated numerically with the help of the analytical
deconvolution technique.

The self-energy X(z) needed to evaluate the GF G, is obtained numerically by
iterating the equation (24) with an approximative expression for

M) ~~12+ £+ 182 -a) /e -4, (25)

Examples of the two-particle densities calculated for this simplified model and
some selected parameters » and U are presented in figures 1-3. The energy in these
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n=1.93

THO-PRARTICLE DOS
[ =4
o

U=1.5%

-4 -2 o 2 4
- Figure 3. Similar to figure 1, but for n = 1.99
SHIFTED ENERGY i and varying U.

plots is shifted by U. Figure 1 shows spectra for medium interaction and different
electron concentrations. The results are similar to the Hartree~Fock-like ones: with
increasing electron concentration n the number of the two-hole excitations increases
while the number of the two-electron excitations decreases and the spectra for the
particle concentrations n and 2 — n are related by the hole—electron symmetry. The
main difference is that new peaks with small weight appear. In particular, this is
seen for the half-filled band. In this case the spectra calculated using the old solution
were only shifted and their shapes did not change with U/, Using the new solution
they change and the satellites split off (figure 2). Figure 3 shows the situation for
a nearly filled band. With increasing strength of pair interaction U the character
of the spectra changes from band-like spectra to atomic-like ones; for large U an
atomic-like peak with large weight splits off from the broad main band in agreement
with previous theories {4-6].

6. Conclusions

Employing the alloy analogy in the space of the two-particle states we have developed
a new approximate theory of the two-particle excitations for single-band Hubbard
model. This is based on the alloy analogy decoupling for the two-particle double-
time GF followed by several additional approximations some of which could be further
improved. The theory can be applied to any electron concentration 0 € n € 2 and to
any strength of pair interaction U. It yields correct results in limiting cases for which
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an exact solution is known. In addition it behaves correctly in the regime of strong
interactions U — oo. The theory can be straightforwardly extended to the case of
alloys and work on this problem is in progress.
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